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We study the thermodynamical properties of a self-gravitating gas with two or more types of particles. Using
the method of linear series of equilibria, we determine the structure and stability of statistical equilibrium states
in both microcanonical and canonical ensembles. We show how the critical temperature �Jeans instability� and
the critical energy �Antonov instability� depend on the relative mass of the particles and on the dimension of
space. We then study the dynamical evolution of a multicomponent gas of self-gravitating Brownian particles
in the canonical ensemble. Self-similar solutions describing the collapse below the critical temperature are
obtained analytically. We find particle segregation, with the scaling profile of the slowest collapsing particles
decaying with a nonuniversal exponent that we compute perturbatively in different limits. These results are
compared with numerical simulations of the two-species Smoluchowski-Poisson system. Our model of self-
attracting Brownian particles also describes the chemotactic aggregation of a multispecies system of bacteria in
biology.
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I. INTRODUCTION

In previous papers of this series �1–8�, we have intro-
duced a model of self-gravitating Brownian particles and we
studied its equilibrium and collapse properties in the frame-
work of thermodynamics. In this model, the motion of the
particles is described by N coupled stochastic equations �one
for each particle� involving a friction and a random force in
addition to self-gravity. The friction and the random force
mimic the influence of a thermal bath of nongravitational
origin imposing the temperature. The temperature of the bath
measures the strength of the stochastic force. The self-
gravitating Brownian gas model has a conceptual interest in
physics because it represents the canonical counterpart of a
Hamiltonian system of stars in Newtonian interaction. There-
fore, it can be used to test dynamically the inequivalence of
statistical ensembles which is generic for systems with long-
range interactions. Although most astrophysical systems are
described by the Newton equations �without dissipation�, the
self-gravitating Brownian gas model could find applications
for the transport of dust particles in the solar nebula and the
formation of planetesimals by gravitational instability �9�. In
this situation, the particles experience a drag force due to the
friction with the gas and a stochastic force due to turbulence.
Furthermore, self-gravity must be taken into account when
the particles have grown sufficiently by sticking processes
and start to feel their mutual attraction. This would be just a
first step because other ingredients are required to improve
the description of planetesimal formation. It has also been
shown in �10� that the process of violent relaxation for

collisionless stellar systems exhibits similarities with the dy-
namics of a self-gravitating Brownian gas. In particular, the

coarse-grained distribution function f̄�r ,v , t� satisfies a gen-
eralized Fokker-Planck equation, involving an effective dif-
fusion and an effective friction taking into account the pecu-
liarities of the collisionless evolution.

Our model of self-gravitating Brownian particles has also
interest for systems that are not necessarily related to astro-
physics. For example, in the physics of ultracold gases, it has
been shown recently that, using a clever configuration of
lasers beams, it is possible to create an attractive 1/r inter-
action between atoms �11�. This leads to the fascinating pos-
sibility of reproducing gravitational instabilities in the labo-
ratory. In particular, it is argued in �12� that it should be
possible to observe the “isothermal collapse” �13,14� of a
Fermi gas cloud in thermal equilibrium with a bosonic “res-
ervoir.” Since the system is essentially dissipative a canoni-
cal description �fixed T� is required and a plausible dynami-
cal description of the system would be formed by the
Fokker-Planck equation coupled to the gravitational Poisson
equation. In that case, the quantum nature of the particles
�fermions� is important, and generalized Fokker-Planck
equations, including the Pauli exclusion principle, must be
considered as in �6�. On the other hand, as discussed in our
previous papers, the collapse of the self-gravitating Brown-
ian gas is analogous to the chemotactic aggregation of bac-
terial populations in biology. In particular, the
Smoluchowski-Poisson system which describes self-
gravitating Brownian particles in a strong friction limit is
isomorphic to a simplified version of the Keller-Segel model
�15� in biology, obtained in the limit of large diffusivity of
the chemical �16�. The Keller-Segel model is a standard
model in mathematical biology �17�. Due to this analogy, the
results of �1–8� have direct application for the chemotactic
aggregation of bacterial populations.

For all these reasons, and also in its own right, the study
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of the self-gravitating Brownian gas model �1� is clearly of
interest in physics. So far, most works have focused on the
case of a single species of particles. In this paper, we extend
these approaches to the case of a multicomponent system,
with particular attention devoted to the two-species model. In
Sec. II, we present the basic equations describing a multi-
components self-gravitating Hamiltonian and Brownian sys-
tem and show the analogies of the latter with a multicompo-
nents chemotactic system. We use a mean-field approach
which is exact in a suitable thermodynamic limit N�→ +�,
keeping ��=�Gm�

2N� /Rd−2 constant for each species � �see
Appendix A�. In Sec. III, we discuss the statistical equilib-
rium states of a two-component self-gravitating system in
both microcanonical and canonical ensembles. Therefore,
our static study applies both to ordinary stellar systems �gal-
axies, globular clusters,…� described in the microcanonical
ensemble and Brownian systems �or bacteria� described in
the canonical ensemble. We obtain the equilibrium density
profiles and analyze their thermodynamical stability by
drawing the linear series of equilibria �caloric curves� and
using the turning point argument �18�. We show how the
critical temperature �Jeans instability �13�� and the critical
energy �Antonov instability �19,20�� depend on the param-
eters �=m1 /m2 and �=M1 /M2, where m� is the individual
mass of the particles and M�=N�m� the total mass of species
�. In the microcanonical ensemble, we find that the gra-
vothermal catastrophe is advanced, i.e., it occurs sooner with
respect to the single-species case. In the canonical ensemble,
the isothermal collapse is advanced if we add heavy particles
in the system and delayed if we add lighter particles �keeping
the total mass fixed�. Exact analytical expressions of the
critical temperature of collapse are given in dimension d=2.
An approximate expression is obtained for d	2 by using the
Jeans swindle �see Appendix B�. Our static study �Sec. III�
completes previous investigations by Taff et al. �21� and De
Vega and Siebert �22� in d=3 and Yawn and Miller �23� in
d=1. In Sec. IV, we consider for the first time the dynamics
of the two-species self-gravitating Brownian gas in a strong
friction limit described by the Smoluchowski-Poisson sys-
tem. We study the collapse below Tc by looking for self-
similar solutions. Depending on the values of � and 

=�1 /�2, where �� are the friction coefficients, we show that
the collapse of one species of particles dominates the other.
The invariant profile of the dominant species scales as �
�r−2 as for the one-component gas �1�. The collapse of the
other particles is slaved to the collapse of the dominant spe-
cies. This decouples the equations of motion and reduces the
problem to the study of a single new dynamical equation. We
show that this equation possesses self-similar solutions and
that the scaling profile scales as ��r−� where � is a non-
trivial exponent depending on �, 
, and d, which leads to
particle segregation. We determine this scaling exponent per-
turbatively in a large dimension limit d→ +� on the one
hand and for a weak asymmetry �→1 and 
→1 on the
other hand. We also consider the limits �→0, +� or 

→0, +�. These perturbative analytical results are compared
with the exact results obtained numerically.

II. ANALOGY BETWEEN SELF-GRAVITATING
BROWNIAN PARTICLES AND BACTERIAL

POPULATIONS

A. Self-gravitating Hamiltonian systems with different species
of particles

Let us consider a Hamiltonian system of X species of
particles with mass m1 , . . . ,mX in a space of dimension d.
Throughout the paper, the particles of species 1 are labeled
from i=1 to g1N, the particles of species 2 from �g1N+1� to
g2N, and so on up to species X. The Latin letters i will index
the N particles and the Greek letters � will index the X
species. The particles interact via a long-range potential
U�r1 , . . . ,rN�=�ijmimju�ri−r j�. In this paper, u�ri−r j�=
−G / ��d−2��ri−r j��d−2�� denotes the gravitational potential of
interaction in d dimensions. This Hamiltonian system is
completely defined by the equations of motion

dri

dt
= vi,

dvi

dt
= −

1

mi
�iU�r1, . . . ,rN� . �1�

In kinetic theory, the collisionless evolution of this system
is governed by the Vlasov-Poisson system, which is valid for
sufficiently “short” times. In fact, this regime can be ex-
tremely long in practice since the relaxation time �Chan-
drasekhar’s time� increases almost linearly with the number
of particles. The collisional regime is usually described by
the Landau-Poisson system which governs the evolution of
the distribution function f�r ,v , t� toward statistical equilib-
rium. For a multispecies system in d=3, the Landau equation
reads

�f�

�t
+ v ·

�f�

�r
+ F ·

�f�

�v

=
�

�v� �
�=1

X � K��	m�f��
�f�

�v� − m�f�

�f��

�v��
dv�,

K�� = 2�G21

u
ln �	��� −

u�u�

u2 
 , �2�

where u=v−v� is the relative velocity of the particles in-
volved in an encounter, ln �=�0

+�dk /k is the Coulomb factor
�which must be appropriately regularized�, and F=−�� is
the gravitational force per unit of mass. We have also set
f�� = f��r ,v� , t� assuming that the encounters can be treated as
local �see �24� for a critical discussion of this approxima-
tion�. The gravitational potential ��r , t� is determined by the
Poisson equation

�� = SdG� , �3�

with the total density �=��=1
X ��, where ���r , t�

=�f��r ,v , t�dv is the spatial density of species � and
f��r ,v , t� is their distribution function �f��r ,v , t�drdv gives
the total mass of particles of species � with position in
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�r ;r+dr� and velocity in �v ;v+dv� at time t�. The total dis-
tribution function is f =��=1

X f�.
The Landau-Poisson system conserves the total mass

M� =� ��dr = N�m�, �4�

of each species and the total energy

E =
1

2
� fv2drdv +

1

2
� ��dr = K + W , �5�

where K is the kinetic energy and W is the potential energy.
Furthermore, the Landau-Poisson system satisfies a

H-theorem Ṡ�0 for the multicomponent Boltzmann entropy

S = − kB�
�=1

X � f�

m�

ln	 f�

m�

drdv . �6�

At equilibrium, Ṡ=0 implying that the current in the R.H.S.
of Eq. �2� must vanish. The advective term in the L.H.S. of
this equation must also vanish, independently. These two
conditions imply that the only stationary solution of the Lan-
dau equation �2� is the Maxwell-Boltzmann distribution

f��r,v� = A�	m��

2�

d/2

e−�m��v2/2+��r��, �7�

where the inverse temperature �=1/kBT appears as an inte-
gration constant. Note that the advective term �Vlasov� is
canceled out by any distribution function f�= f���� depend-
ing on the particle energy �= �v2 /2�+��r� alone. The can-
cellation of the collision term singles out the Boltzmann dis-
tribution among this infinite class of distributions. The
Maxwell-Boltzmann distribution Eq. �7� represents the sta-
tistical equilibrium state of the system in a mean-field ap-
proximation. It can be obtained alternatively by maximizing
the entropy �6� at fixed energy and particle number �for each
species�. The condition of thermodynamical stability in the
microcanonical ensemble �maximum of S at fixed E, N�� is
equivalent to the linear dynamical stability with respect to
the Landau-Poisson system �25�.

According to the theorem of equipartition of energy
�which remains valid here�, the r.m.s. velocity of species �
decreases with mass such that

�v2� =
� e−�m�v2/2v2dv

� e−�m�v2/2dv

= d
kBT

m�

. �8�

Therefore, heavy particles have less velocity dispersion to
resist gravitational attraction and will preferentially orbit in
the inner region of the system. This leads to mass segrega-
tion, but of a very different nature from the dynamical seg-
regation that we study in Sec. IV. Defining the pressure by
p= �1/d�� fv2dv, we get from Eq. �8� the local equation of
state

p = �
�=1

X
��

m�

kBT . �9�

The local mass density �� of each species is obtained directly
from the integration of Eq. �7� over the velocities yielding

���r� = A�e−�m���r�. �10�

The gravitational field ��r� is obtained self-consistently by
substituting Eq. �10� in the Poisson equation �3� and solving
the resulting differential equation.

B. Self-gravitating Brownian particles with different species
of particles

The Hamiltonian system of stars presented in Sec. II A is
associated with the microcanonical ensemble �fixed energy�
in statistical mechanics. We shall now introduce a model of
particles in Newtonian interaction associated with the ca-
nonical ensemble �fixed temperature�. Specifically, we con-
sider a system of N self-gravitating Brownian particles be-
longing to X different species. This is the generalization of
the model introduced in �1�. This system is characterized by
N coupled stochastic equations

dri

dt
= vi,

dvi

dt
= − �ivi −

1

mi
�iU�r1, . . . ,rN� + �2DiRi�t� , �11�

where �i is the friction coefficient, Di is the diffusion coeffi-
cient and Ri�t� the stochastic force. In this paper Ri�t� is a
white-noise satisfying the conditions �Ri�t�=0 and
�Ra,i�t�Rb,j�t��=�ab�ij��t− t�� where i , j refer to the particles
and a ,b to the space coordinates. The diffusion coefficient
and the friction coefficient are related to each other by the
Einstein relation �see Appendix A�

D� =
��kBT

m�

, �12�

where T is the thermodynamical temperature. Therefore, the
temperature measures the strength of the stochastic force.

In the mean-field approximation, the evolution of the sys-
tem is governed by the multicomponents Kramers equation
�see Appendix A for details�

�f�

�t
+ v ·

�f�

�r
+ F ·

�f�

�v
=

�

�v
· 	D�

�f�

�v
+ ��f�v
 , �13�

which must be coupled consistently with the Poisson equa-
tion, using F=−��. The Kramers-Poisson system conserves
the total mass of each species. Since the system is dissipa-
tive, the energy �5� is not conserved and the entropy �6� does
not increase monotonically. However, introducing the free
energy

F��f��� = E��f��� − TS��f��� , �14�

the Kramers-Poisson system satisfies a sort of canonical

H-theorem Ḟ�0. At equilibrium, Ḟ=0 implying that the dif-
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fusion current in Eq. �13� must vanish. The advective term
must also vanish. These two conditions lead to the Maxwell-
Boltzmann distribution �7� where 1/� is the temperature of
the bath. This distribution represents the statistical equilib-
rium state of the system in a mean-field approximation. It
can be obtained alternatively by minimizing the free energy
�14� at fixed particle number �for each species�. The condi-
tion of thermodynamical stability in the canonical ensemble
�minimum of F at fixed N�� is equivalent to the linear dy-
namical stability with respect to the Kramers-Poisson system
�25�.

In order to simplify the problem further, we consider the
strong friction limit and let �i→ +� for each particle i. This
amounts to neglecting the inertia of the particles. Instead of
Eq. �11�, we obtain a simpler system of coupled stochastic
equations

dri

dt
= − �i�iU�r1, . . . ,rN� + �2Di�Ri�t� , �15�

where �i=1/mi�i is the mobility and D�i=Di /�i
2=kBT /mi�i is

the diffusion coefficient in physical space. The mean-field
Fokker-Planck equation obtained in this limit of strong fric-
tion is the Smoluchowski equation, which can be written for
each species

���

�t
=

1

��

� · 	 kBT

m�

� �� + �� � �
 . �16�

It has to be solved in conjunction with the Poisson equation
�3�. The passage from the Kramers to the Smoluchowski
equation can be made rigorous by using a Chapman-Enskog
expansion �see �26� for details and generalizations�. In the
��→ +� limit, the distribution function can be written

f��r,v,t� = 	�m�

2�

d/2

���r,t�e−m��v2/2 + O	 1

��

 , �17�

where ���r , t� evolves according to Eq. �16�. Using Eqs. �14�
and �17�, it is possible to express the free energy as a func-
tional of the spatial density of each species in the form

F������ =
1

2
� ��dr + kBT�

�=1

X � ��

m�

ln	 ��

m�

dr , �18�

up to an irrelevant additive constant. The Smoluchowski-
Poisson system conserves the total mass of each species and

decreases the free energy Ḟ�0. At equilibrium, the density
is given by Eq. �10�. The linearly dynamically stable steady
states minimize the free energy F������ at fixed mass �for
each species� �25�.

The Kramers and Smoluchowski equations can be written

�f�

�t
+ v ·

�f�

�r
+ F ·

�f�

�v
=

�

�v
· ���f�

�

�v
	 �F

�f�

� , �19�

���

�t
=

1

��

� · 	�� �
�F

���

 , �20�

where the free energy is respectively given by Eqs. �14� and
�18�. They can also be obtained from the linear thermody-

namics of Onsager or by maximizing the rate of free energy
dissipation under appropriate constraints �27�, which is the
variational version of the linear thermodynamics.

C. Multicomponents chemotactic systems

In previous papers, see e.g. �6�, we have shown that the
equations describing the dynamics of self-gravitating Brown-
ian particles in a strong friction limit were isomorphic to a
simplified version of the Keller-Segel model �15� describing
the chemotactic aggregation of bacterial populations. We
shall propose here a simple generalization of this model to a
multicomponents system of bacteria and show the relation
with the multicomponents Brownian model introduced pre-
viously. Note that a more general multicomponents chemo-
tactic model has been proposed recently by Wolansky �28�.
We consider a system of X populations of bacteria with den-
sity ��, each species secreting a substance �chemical� with
density c�. The bacteria diffuse with a diffusion coefficient
D� and they move along the �total� concentration of chemical
c=��c� as a result of a chemotactic attraction. The chemi-
cals, produced by the bacteria with a rate a, are degraded
with a rate b. They also diffuse with a diffusion coefficient
D�. The evolution of the system is described by the coupled
differential equations

���

�t
= D���� − �� � ��� � c� , �21�

�c�

�t
= D��c� + a�� − bc�. �22�

Like in the one-species problem �16�, we shall consider a
regime of large diffusion of the chemicals so that we ignore
the temporal derivative in the second equation. We shall also
take b=0, assuming that there is no degradation of the
chemicals. This reduces the problem to the coupled system

���

�t
= D���� − �� � ��� � c� , �23�

�c = − �� . �24�

These equations are isomorphic to the multicomponents
Smoluchowski-Poisson system �16�–�3� provided that we
make the identification D�=kBT /��m�, ��=1/��, c=−�,
and �=SdG. Due to this analogy, the following results can be
applied to the chemotactic problem in biology by a proper
reinterpretation of the parameters.

III. STATISTICAL EQUILIBRIUM STATES
OF A MULTICOMPONENT SYSTEM

OF SELF-GRAVITATING PARTICLES

A. The thermodynamical potentials

At a fundamental level, the Boltzmann entropy is defined
by S=kB ln W, where W is the number of microstates �com-
plexions� associated with a given macrostate. This number W
can be obtained by combinatorial analysis. In the continuum
limit, a macro-state is specified by the smooth distribution

SOPIK, SIRE, AND CHAVANIS PHYSICAL REVIEW E 72, 026105 �2005�

026105-4



function f�r ,v� and the Boltzmann entropy takes the form of
Eq. �6�. Therefore, if we assume that all microstates are equi-
probable for an isolated system at equilibrium �microcanoni-
cal ensemble�, the optimal distribution function maximizes
the Boltzmann entropy at fixed total energy and mass �for
each species�. Introducing Lagrange multipliers and writing
the variational principle in the form

�S − ��E − �
�=1

X

���M� = 0, �25�

we obtain the Maxwell-Boltzmann distribution �7�. It is im-
portant to recall at that stage that the Boltzmann entropy has
no global maximum for self-gravitating systems. Hence, we
have to confine the system within a restricted region of space
and look for local entropy maxima. These metastable states
are physically relevant because their lifetime increases expo-
nentially with the number of particles �29�.

On the other hand, if the system is in contact with a heat
bath fixing the temperature �canonical ensemble�, the statis-
tical equilibrium state minimizes the free energy F=E−TS at
fixed mass �for each species�. Introducing Lagrange multipli-
ers and writing the variational principle in the form

�F − �
�=1

X

���M� = 0, �26�

we obtain the Maxwell-Boltzmann distribution �7� as in the
microcanonical ensemble. What we have done essentially is
a Legendre transformation to pass from the entropy to the
free energy, as the temperature is fixed instead of the energy.
Here again, the system must be confined within a box and
only local minima of free energy exist.

The statistical equilibrium distribution of particles is
given by Eq. �10� where the gravitational potential satisfies
the multispecies Boltzmann-Poisson equation

�� = SdG�
�=1

X

A�e−�m��. �27�

In the microcanonical problem �Hamiltonian systems�, the
inverse temperature must be related to the energy while in
the canonical problem �Brownian systems� it is imposed by
the bath �and the corresponding mean-field energy is inter-
preted as the averaged energy�. Then, we can plot the series
of equilibria ��E�. The stability of the system can be settled
by the turning point argument �18� as in the single-species
case. Although the critical points of constrained entropy and
constrained free energy yield the same density profiles, the
stability limits �related to the sign of the second order varia-
tions� will differ in microcanonical and canonical ensembles.
As these results on the inequivalence of statistical ensembles
have been extensively discussed in the single-species case
�30,13,14,31�, we shall not go into much detail here and
rather focus on the new aspects brought by the consideration
of a distribution of mass among the particles. We also recall
that for systems with long-range interactions, the mean-field
description is exact �see Appendix A� so that our thermody-
namical approach is rigorous.

B. The two-species Emden equation

From now on, we restrict ourselves to a system with only
two species of particles with mass m1 and m2. We assume
that m1	m2 and set �=m1 /m2	1. In order to determine the
structure of isothermal spheres, we introduce the function
�=m2���−�0� where �0 is the gravitational potential at r
=0. The density profile of each species can then be written as

�1 = �1�0�e−��, �2 = �2�0�e−�, �28�

where �1�0� and �2�0� denote the central density. Restricting
ourselves to spherically symmetric solutions and introducing
the notation �= �SdG�m2�2�0��1/2r, the Boltzmann-Poisson
equation �27� takes the dimensionless form

1

�d−1

d

d�
	�d−1d�

d�

 = e−� + ��e−��, �29�

where �=n1�0� /n2�0� is the ratio of the central numerical
density n�=�� /m� of the two species. Equation �29� repre-
sents the two-species Emden equation in d dimensions. It
must be supplemented by the boundary conditions

��0� = ���0� = 0. �30�

The one-component case is recovered for �=0.
The two-species Emden equation �29� in dimension d=3

has been studied by Taff et al. �21� who plotted the density
profiles and the caloric curves for different values of �. In
their work, the ratio � of central densities is maintained fixed
along the series of equilibria. We shall extend their study in a
space of dimension d �with particular emphasis on the criti-
cal dimension d=2� and consider the more physical �and
more complicated� case where the ratio �=M1 /M2 of the
total mass of each species �which are the conserved quanti-
ties� is kept fixed instead of �. This makes it possible to use
the caloric curve ��E� to settle the thermodynamical stability
of the system using the turning point argument �this is not
possible when � varies along the series of equilibria�. Fur-
thermore, we shall obtain analytical expressions of the criti-
cal points �energy and temperature� as a function of � and �.

We shall first derive general properties of the differential
equation �29�. For �→0, an expansion of ���� in Taylor
series yields

���� =
1 + ��

2d
�2 −

�1 + ����1 + ��2�
8d�d + 2�

�4

+
1 + ��

48d2�d + 2��d + 4�
�d�1 + ��2�2

+ �d + 2��1 + ����1 + ��3���6 + O��8� . �31�

To investigate the asymptotic behavior of ���� for �→ +�,
we first perform the transformation t=ln � and z=−�
+2 ln �. In terms of z and t, the two-species Emden equation
�29� becomes

d2z

dt2 + �d − 2�
dz

dt
= − ��e�ze−2��−1�t − ez + 2�d − 2� . �32�

For �→ +�, i.e., t→ +�, the concentration of heavy par-
ticles, proportional to e−��, goes to zero faster than the con-
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centration of light particles, proportional to e−�, so the first
term in the R.H.S. can be neglected in a first approximation.
Then, Eq. �32� reduces to the equation obtained for a single
type of particles. For d	2, it describes the damped motion
of a fictitious particle in a potential V�z�=ez−2�d−2�z where
z plays the role of position and t the role of time. For t→
+�, the system has reached its equilibrium position at z0
=ln�2�d−2��. Returning to initial variables, we find that
e−��2�d−2� /�2 for �→ +�. Since the two-species Emden
equation does not satisfy a homology theorem, this solution
is only valid asymptotically. It does not form a singular so-
lution of Eq. �29� when ��0, contrary to the one-component
case �2�. We note that, for d	2, the total mass M2
��0

+��2rd−1dr of the lightest particles is infinite �as in the
single species case� since �2�r−2. However, since �1�r−2�,
the total mass of the heaviest particles is finite if

� 	 �3/2 =
d

2
. �33�

The next order correction to the asymptotic behavior of �
can be obtained by setting z=z0+z� with z��1 and keeping
only terms that are linear in z�. This yields

d2z�

dt2 + �d − 2�
dz�

dt
+ 2�d − 2�z� = − ��2��d − 2��e−2��−1�t.

�34�

This differential equation can be solved analytically. The dis-
criminant associated to the homogeneous equation exhibits
two critical dimensions d=2 and d=10 �2�. For 2d10,
we have for �→ +�,

e−� =
2�d − 2�

�2 �1 +
A

��d−2�/2 cos	��d − 2��10 − d�
2

ln � + �

−

��2�−1�d − 2���−2��−1�

2�� − 1�2 − �d − 2��� − 2�
� , �35�

where A and � are integration constants. The density profile
�35� intersects the asymptotic solution 2�d−2� /�2 at points
that asymptotically increase geometrically in the ratio
1:e2�/��d−2��10−d�. For

� 	 �5/4 =
d + 2

4
, �36�

the last term in Eq. �35� can be neglected for sufficiently
large � and there is an infinite number of intersections. For
��5/4, there is only a finite number of intersections. For
d	10, we have for �→ +�,

e−� =
2�d − 2�

�2 �1 +
1

��d−2�/2	A�
��d−2��d−10�/2 +

B

�
��d−2��d−10�/2


−
��2�−1�d − 2���−2��−1�

2�� − 1�2 − �d − 2��� − 2�� . �37�

There is no intersection with the asymptotic solution. For d
2, the density profile of the lightest particles decreases as
e−��Ce−Ad�2−d

and for d=2 as e−��A�−�. The normalized

density profiles are plotted in Fig. 1 in d=1 and d=3. The
case d=2 is postponed to Sec. III E.

C. The Milne variables

Since the multispecies Emden equation does not satisfy a
homology theorem, it cannot be transformed into a first order
differential equation as in the one-species case. However, the
use of the Milne variables is still useful to analyze the phase
portrait of the equation. In the general case, they are defined
by

u =
d ln M�r�

d ln r
= �

��e−�� + e−�

��
,

v = −
d ln p�r�

d ln r
= ���	��e−�� + e−�

�e−�� + e−� 
 , �38�

where we used the integrated density M�r�=�0
r�Sdrd−1dr and

the total pressure p�r�= ��1 /m1+�2 /m2�kBT. Taking the loga-
rithmic derivatives of u and v with respect to � and introduc-
ing the notation w= ��e−��+e−�����2e−��+e−�� / ���e−��

+e−��2, we get

FIG. 1. The dimensionless density profiles �̃1���=��e−�� and
�̃2���=e−� for �=5 and for �=1 in d=1 �a� and d=3 �b�. The
dashed line represents the density of the one component system.
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1

u

du

d�
=

1

�
�d − u − vw� , �39�

1

v

dv
d�

=
1

�
�u + v�1 − w� − �d − 2�� . �40�

The single species case is recovered for �=0 and w=1. Tak-
ing the ratio of the above equations, we obtain

u

v

dv
du

=
u + v�1 − w� − �d − 2�

d − u − vw
. �41�

The solution curve in the �u ,v� plane is plotted in Fig. 2.
The curve is parameterized by �. It starts from the point
�u ,v�= �d ,0� with a slope

	dv
du



0
= −

d + 2

d

�1 + ���3

�1 + ���1 + �����1 + ��� + 1��
, �42�

corresponding to �=0. For d	2 and �→ +�, the curve con-
verges to the limit point �d−2,2� which corresponds to the
asymptotic behavior e−��2�d−2� /�2. Contrary to the single-
species case, the �u ,v� curve can make loops before spiraling
around the limit point. These loops are a signature of a mul-

ticomponents system; using Eq. �41�, the points of horizontal
and vertical tangent are defined respectively by u+v�1−w�
=d−2 and u+vw=d. Due to the term w, new solutions of
these equations arise with respect to the single-species case
and they create loops. For d	10, the �u ,v� curve reaches the
limit point without spiraling but still makes loops for the
reason previously mentioned. For d2, the curve tends
monotonically to �0, +�� for �→ +� as in the single species
case. The two-dimensional case is discussed in Sec. III E.

D. The thermodynamical parameters

As indicated previously, isothermal self-gravitating sys-
tems have infinite mass. We shall overcome this problem by
confining the system within a spherical box of radius R �An-
tonov model�. Physically, the box delimits the region of
space where thermodynamical arguments can be applied. In
the biological problem �chemotaxis�, the box represents the
natural boundary of the domain in which the bacteria live.
For bounded isothermal systems, the solution of Eq. �29� is
terminated by the box at a normalized radius given by �
= �SdGm2��2�0��1/2R. We shall now determine the tempera-
ture and the energy corresponding to the configuration in-
dexed by �.

Using the Poisson equation �3�, we write the Gauss theo-
rem

GM = G� �dr = SdG�
0

R

�rd−1dr

= �
0

R d

dr
	rd−1d�

dr

dr = 	rd−1d�

dr



r=R
.

�43�

Introducing the dimensionless variables defined previously,
we find that the normalized inverse temperature is given by

� �
�GMm2

Rd−2 = ������ . �44�

The calculation of the energy E=K+W is a little more
intricate. The kinetic energy is given by

K =
d

2
�N1 + N2�kBT =

d

2
	M1

m1
+

M2

m2

kBT =

d

2

M2

m2
	 �

�
+ 1
kBT .

�45�

Using M =M2��+1� and Eq. �44�, the normalized kinetic en-
ergy can be written

−
KRd−2

GM2 = −
d

2������
� + �

��� + 1�
. �46�

For d�2, the expression of the potential energy can be de-
duced from the Virial theorem

2K + �d − 2�W = dVdRdp�R� , �47�

where Vd=Sd /d is the volume of a d-dimensional sphere
with unit radius �and Sd is the surface of a d-dimensional unit
sphere� �3�. Using p�R�= ��1�R� /m1+�2�R� /m2�kBT and the

FIG. 2. The solution of the two-species Emden equation in the
�u ,v� plane for d=1 �up, a� and in d=3 �down, b�. The single-
species case is represented by the dashed line.
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expressions �28� of the density, we directly obtain

−
WRd−2

GM2 = −
1

�d − 2���2���
��e−����� + e−�����

+
d

�d − 2�������
� + �

��� + 1�
. �48�

Adding Eqs. �46� and �48�, we find that the total normalized
energy is

� � −
ERd−2

GM2 =
d

2������	4 − d

d − 2

 � + �

��� + 1�

−
1

�d − 2���2���
��e−����� + e−����� . �49�

Note that an alternative expression of the potential energy,
valid also for d=2, can be obtained along the following lines.
Starting from the expression

W =
1

2
� ��dr , �50�

and introducing the dimensionless variables defined previ-
ously, we get

−
WRd−2

GM2 = −
1

2�d��2����0

�

���e−�� + e−���� + �0��d−1d� ,

�51�

where �0=m2���0� represents the normalized central gravi-
tational potential. It is determined by the relation ����
=m2����R�−��0�� with ��R�=−GM / ��d−2�Rd−2� for d
�2. This yields

�0 = − 	������
d − 2

+ ����
 . �52�

Equation �51� remains valid for d=2 but in that case, ��R�
=0 so that �0=−����. The corresponding expression of the
total normalized energy is now

� = −
d

2������
� + �

��� + 1�
−

1

2�d��2���

��
0

�

���e−�� + e−���� + �0��d−1d� . �53�

Equations �44� and �49� or �53� define a series of equilib-
ria ��E� parameterized by the value of the normalized radius
�, or equivalently by the density contrast R��2�0� /�2�R�
=e����. Along this series of equilibria, we can either fix the
ratio of central densities � or the ratio of total mass �. These
two parameters are related to each other by

� �
M1

M2
=

���
0

�

�d−1e−��d�

�
0

�

�d−1e−�d�

. �54�

In the framework of statistical mechanics, it is more relevant
to fix � along the series of equilibria since the total mass of
each species is a conserved quantity. Furthermore, it is only
under this condition that the turning point argument can be
used to settle the stability of the system. Therefore, in the
foregoing equations, � must be viewed as an implicit func-
tion of � given by

���� =
�

�

�
0

�

�d−1e−�d�

�
0

�

�d−1e−��d�

. �55�

Then, for given �, the two-species Emden equation �29�
must be solved by an iterative procedure in order to satisfy
the constraint �55�.

Figure 3 displays an ensemble of caloric curves in d=1
and in d=3 for different values of � �at fixed ��. In d=1, the
curves are monotonic and the system is always stable. In d
=3, the curves present turning points at which a mode of
stability is lost depending on the ensemble considered �a
vertical tangent corresponds to a loss of microcanonical sta-
bility and a horizontal tangent to a loss of canonical stabil-
ity�. These results have been discussed in detail for the one-
species case, see e.g. �13�, and will not be repeated here. We
shall just discuss how the critical points �beyond which no
equilibrium state exists� depend on the relative mass of the
particles. First, consider the canonical ensemble in which the
control parameter is the normalized inverse temperature �.
For �	�c�� ,��, the system undergoes an “isothermal col-
lapse.” For �=0 we obviously recover the value �c�2.52 of
the single species case. As the mass ratio � increases �at
fixed total mass M and �	1�, �c decreases �Tc increases� up
to �c=2.52/� obtained for �→ +�. In the microcanonical
ensemble, the control parameter is the normalized energy �.
For �	�c�� ,��, the system undergoes a “gravothermal ca-
tastrophe.” For �=0 and �→ +�, we recover the single-
species value �c�0.335. Between these two extreme values,
�c passes by a minimum ��c�min���. These results are illus-
trated in Fig. 4 where �c and �c are plotted as a function of
� for a given value of �. The value of the minimum of the
normalized energy ��c�min��� seems to behave linearly with
� �except for �→1� as illustrated in Fig. 5. If we take the
particles of mass m2 as a reference, we conclude that the
onset of isothermal collapse in the canonical ensemble is
advanced when heavier particles m1	m2 are added to the
system �keeping the total mass M fixed�. It is delayed if
lighter masses ��1� are added. On the other hand, the
onset of the gravothermal catastrophe in the microcanonical
ensemble is always advanced in a multi-species system �with
respect to the single species case�, whatever the mass of the
particles added �keeping the total mass M fixed�.
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Some analytical results can be obtained for �→ +� and
d	2. This corresponds to the configurations located near the
limit point in Fig. 3�b�, at the center of the spiral. In that
case, it will be shown a posteriori that ���� diverges for a
fixed �. Accordingly, we can neglect the term e−� in the
Emden equation �29� which reduces to

1

�d−1

d

d�
	�d−1d�

d�

 = ��e−��. �56�

This approximation is valid for ���, where �� is such that
��e−�������e−�����. If we introduce a new potential � de-
pending on 
����� through the defining relation

���� =
1

�
��
� =

1

�
������� , �57�

then Eq. �56� takes the form of the ordinary Emden equation

1


d−1

d

d

	
d−1d�

d


 = e−�. �58�

Using the behavior ��2 ln 
−ln�2�d−2�� for large 
, we
obtain the following behavior of ���� in the range 1��
��:

e−� �
�2�d − 2��1/�

������2/�
. �59�

We shall find a posteriori that ���� so that the range of
validity of this behavior is huge in the limit �→ +�. This

FIG. 3. Series of equilibria �caloric curves� for a two-component
isothermal gas in d=1 �up, a� and in d=3 �down, b�. We plot the
inverse normalized temperature �=GMm2� /Rd−2 as a function of
the normalized energy �=−ERd−2 /GM2 for several values of the
total mass ratio �=M1 /M2. The dashed curve represents the one
component case, i.e., �=0.

FIG. 4. Evolution of the critical normalized inverse temperature
�c �Jeans temperature� and of the critical normalized energy �c

�Antonov energy� as a function of � for d=3 and �=5. We plot
with a dashed-dotted line the critical temperature �J obtained by
using the Jeans swindle �see Appendix B for details�. Note that this
“naive” prediction provides a reasonable fit of the exact critical
temperature �c.

FIG. 5. Evolution of the minimum Antonov energy ��c�min as a
function of � for d=3. In the range considered, it decreases ap-
proximately linearly as −0.19719�. Note that the minimum An-
tonov energy becomes positive for ��2.627 and ��0.68. Further-
more, the value of � for which �c is minimum is always close to
0.7 �except for �→1�. This is probably related to the fact that
��c�min��� is almost linear in this range.
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scaling in �−2/� contrasts from the scaling in �−2 of Eq. �35�
obtained in the limit �→ +� for fixed �. The validity of Eq.
�59� is confirmed in Fig. 6 where we plot the normalized
density profile of a bounded isothermal system for a large
value of �.

Using Eqs. �55� and �59�, we can investigate the
asymptotic behavior of ���� for �→ +�. We have to esti-
mate the two integrals

I1��� = �
0

�

�d−1e−��d� , �60�

I2��� = �
0

�

�d−1e−�d� , �61�

for large values of �. We check that for d	2 and �	1, the
integrals �extended to +�� do not converge. Therefore, both
terms in the decomposition

I2��� = �
0

��
�d−1e−�d� + �

��

�

�d−1e−�d� �62�

behave as a power law with the same exponent �the second
integral is not negligible with respect to the first�. We can
obtain the asymptotic behavior of the first integral by using
the analytical expression �59� of � in the range 1����.
However, since we do not know the expression of � for ��
��, we cannot compute the second integral. Thus we
can get the exponent of the power law divergence of Ii���
but not the prefactor.

Evaluating Eqs. �60� and �61� with Eq. �59�, we obtain

I1��� � K1
�d−2

����
, I2��� � K2

�d−2/�

����1/� , �63�

where, for the reasons explained previously, the prefactors
are not known. The asymptotic behavior of ���� is now ob-
tained by substituting Eq. �63� in Eq. �55�. This yields

���� � K�2��−1�. �64�

As �	1, the numerical density ratio ���� always diverges
for �→ +� and d	2. Using Eq. �64� we find that ����.
This justifies our initial assumptions. If we now insert Eq.
�64� in Eq. �63�, we find that I2��� diverges as I2�����d−2.
On the other hand, I1��� behaves as I1�����d−2� which di-
verges for ��3/2=d /2 and tends to zero for �	�3/2. In
Fig. 7 we plot the ratio of central numerical densities � as a
function of � for different values of �.

E. The two-dimensional case

The dimension d=2 is a critical dimension for self-
gravitating systems �2�. It is also the relevant dimension for
the biological problem of chemotaxis, since bacterial colo-
nies usually live on a plate. Therefore, the dimension d=2
requires a particular attention. The two-dimensional Emden
equation �29� reads

1

�

d

d�
	�

d�

d�

 = ��e−�� + e−�. �65�

The density profile behaves asymptotically as e−��A�−�

where A and � are constants. For �=0 �single-species case�,
Eq. �65� can be solved analytically and we get the exponent
�=4. For other values of �, we have ��4. Some density
profiles are plotted in Fig. 8. The phase portrait of the Emden
equation �29� in the Milne plane is shown in Fig. 9. On the
other hand, the thermodynamical parameters � and � are
given by

� = GMm2� = ������ , �66�

� = −
E

GM2 = −
1

������
�/� + 1

� + 1

−
1

2�2��2����0

�

���e−�� + e−���� − ������d� .

�67�

Note that the normalized temperature and the normalized

FIG. 6. Dimensionless density profile �̃2���=e−� of the lightest
particles enclosed within a box for d=3, �=5, �=1/9 and �
=5000. In the limit �→ +�, the profile decays as �−2/� for 1��
����. This can be contrasted to the �−2 decay for �→ +� in an
open system with fixed � �see Fig. 1�.

FIG. 7. The ���� curves for several values of �=M1 /M2 for d
=3. These curves are parameterized by �.
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energy do not depend on R. This is a consequence of the
logarithmic form of the gravitational potential in d=2. An
ensemble of caloric curves are plotted in Fig. 10. As in the
previous section, the value of � is fixed along a series of
equilibria so that ���� is determined by an iterative proce-
dure. In continuity with the single species case, the caloric
curves form a plateau for �→ +�. Thus, there exists a criti-
cal inverse temperature �c�� ,�� above which no equilibrium
state is possible in the canonical ensemble �by contrast, there
is no critical energy in d=2 in the microcanonical ensemble�.
The critical temperature �c�� ,�� has two expressions de-
pending on whether �	2 or �2 as we now show.

We first consider the situation in which, at T=Tc, the two
profiles form a Dirac peak at r=0. The parameters corre-
sponding to this situation will be found a posteriori. In this

case, the critical temperature can be obtained from the Virial
theorem as in the single-species problem �3�. We start from
the general relation valid in d=2:

2K −
GM2

2
= 2p�R�V , �68�

with V=�R2. If the densities are concentrated in a Dirac
peak at r=0, the total pressure at the edge of the box van-
ishes. Equations �45� and �68� directly lead to the result

kBTc =
GM2

4N
. �69�

The critical normalized temperature is

�c = 4
� + �

��� + 1�
. �70�

For �=0, we recover the critical inverse temperature �c=4
obtained for the single-species case �2�.

It will be shown that the above regime, called regime �I�,
corresponds to the case where the function ���� converges
for �→ +�. We now consider the regime �II� where ����
diverges so that Eq. �65� reduces to Eq. �56� with d=2. With
the change of variables of Eq. �57�, we obtain the classical
Emden equation �58�. In d=2, it can be solved analytically
and, returning to original variables, we get

���� =
2

�
ln	1 +

��2

8
�2
 . �71�

This analytical expression provides a good approximation of
the solution for all values of ��� where �� is such that

�
0

��
e−�����d� � ���

0

��
e−������d� . �72�

Substituting Eq. �71� into Eq. �72� and using Eq. �74�, we
find that ���� so the range of validity of the analytical
expression is huge, as checked numerically. The density pro-
file of the lightest particles decreases as e−���−4/� and the

FIG. 8. Dimensionless density profiles �̃1���=��e−�� and
�̃2���=e−� in dimension d=2 for �=1 and for �=2 and �=5. For
comparison, the dashed line represents the density of the singe-
component system with slope −4. The slope of the profile e−�

��−� depends on � and �.

FIG. 9. The solution of Eq. �29� in the �u ,v� plane, where u and
v are defined by Eq. �38� for the two-components system at d=2.
The single-species case is represented by the dashed line. All the
curves start at �u ,v�= �d ,0� with the initial slope given by Eq. �41�.
For �→ +�, they tend to the terminal point �0,��.

FIG. 10. An ensemble of caloric curves for different values of
�=M1 /M2 in the two-dimensional case. The dashed curve repre-
sents the one-component case.
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density profile of the heaviest particles decreases as e−��

��−4. These heaviest particles form a Dirac peak as �→
+�. Furthermore, the density ��e−�� of species 1 becomes
smaller than the density e−� of species 2 for �	��
��−�� − 2�2/�4��−1��→0. In order to determine the asymptotic
behavior of ���� for �→ +�, we have to estimate the inte-
grals I1��� and I2��� defined by Eqs. �60� and �61�. We will
consistently show that the assumptions made in regime �II�
are only valid for �	2. Then, it is easy to show that the
integral I1 extended to +� is convergent while the integral I2
is divergent. Therefore, by using the profile �71� to evaluate
�60� and �61�, we obtain the exact asymptotic expression of
I1 while we only obtain the correct exponent of � in I2 but
not the prefactor. Indeed, in the calculation of I1 the second
integral in the decomposition �62� is negligible while in the
calculation of I2 it is of the same order as the first. Then, we
obtain

I1��� �
4

��2 , I2��� � K2�−2/��2��−2�/�, �73�

and, using Eq. �55�, we get

���� � 	�K2�

4

�/2

��−2, �74�

for �→ +�. The assumption that ���� diverges is only con-
sistent with �	2. Note that from Eq. �74� and the value of
I1, we obtain the exact result I2→4/��. We also note that
I1→0 for �→ +�.

We are now able to obtain the critical inverse temperature
�c in regime �II�. In this regime, the heavy particles form a
Dirac peak at r=0 for T=Tc while the light particles extend
in the whole box. Since their density is nonzero on the edge
of the box, we cannot use the reasoning valid in regime �I�.
However, the normalized temperature �66� can be written in
the form

� = �GMm2

= 2��Gm2	1 +
1

�

�

0

R

�1�r�rdr

= ��	1 +
1

�

�

0

�

e−���d� , �75�

where the last integral is precisely I1���. Using Eq. �73� for
�→ +�, we get

�c =
4

�
	1 +

1

�

 . �76�

We note the fortunate cancellation of � which allows one to
obtain this exact result without detailed knowledge of K2. We
now have two different expressions of the critical normalized
inverse temperature �c, respectively, Eqs. �70� and �76�. We
find that the crossover between the two regimes is obtained
for

�* =
1

� − 2
, �* = 2 +

1

�
. �77�

Applying the Virial theorem in regime �II�, we can determine
the exact expression of the normalized density of species 2
on the box. Indeed, using Eqs. �68� and �76�, we obtain

�2e−���� →
8���� − 2� − 1�

�2�2 , �78�

for �→ +�. This implies another necessary condition to be
satisfied in regime �II�, namely �	�*.

In conclusion, regime �I� corresponds to ��2 and ��
	2 and ��*�; in that case, ���� converges and the critical
temperature is given by Eq. �70�. Regime �II� corresponds to
��	2 and �	�*�; in that case, ���� diverges and the criti-
cal temperature is given by Eq. �76�. Equivalently, for a
given �, if ��* �regime I� the critical temperature is given
by Eq. �70� while if �	�* �regime II� it is given by Eq.
�76�. Figure 11 clearly exhibits the crossover of these two

FIG. 11. The critical temperature �c is plotted versus � �a� and
� �b�. The solid lines represent the numerical results. They are in
excellent agreement with the theoretical results �76� and �70� in the
two regimes. The transition between these regimes appears when
�=�*=1/ ��−2� in Fig. 11�a� and when �=�*=2+1/� in Fig.
11�b�.
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different regimes. The theoretical predictions �70� and �76�
of the critical temperature are perfectly consistent with the
numerical results. We plot the normalized density �̃2=e−� in
Fig. 12. In the regime �I� where ���� converges, we have the
asymptotic behavior e−��A�−� for �→ +�. Using the fact
that ������→�c for �→ +�, we find that �=�c where �c is
explicitly given by Eq. �70�. In particular, �=�c=4 for the
single species case. In the regime �II� where ���� diverges,
we have the asymptotic behavior e−��A�−4/� for 1����
and �→ +�. The final asymptotic slope in the range ���
� is −�c given by Eq. �76�. The numerical results are fully
compatible with these predicted values.

We now address the determination of the critical tempera-
ture in d=2 for a system with more than two types of par-
ticles. If all the species collapse on a Dirac peak at T=Tc as
in regime �I� discussed previously, the critical temperature is
again given by Eq. �69� with N=��N� and M =��N�m�. The
critical normalized inverse temperature �=�GMmX is

�c =
4NmX

M
. �79�

Alternatively, we can consider the case where �1��� diverges
for �→ +�, as in regime �II� discussed previously. To apply
the same approximations as before, we need to have �1
��i for i=2, . . . ,X where �i=ni�0� /nX�0�. Repeating the
steps described previously in this more general situation, we
find that �1→ +� if �1	2 and �1��i if �1	2�i. We shall
assume that these conditions are fulfilled �i.e., m1	2m2�. In
that case �1����1−2� and we find by an approach similar to
that described previously that

�c =
4MmX

M1m1
. �80�

IV. COLLAPSE OF A MULTICOMPONENT SYSTEM

A. Self-similar solutions of the two-component
Smoluchowski-Poisson system

We now consider the dynamics of a system of self-
gravitating Brownian particles. We restrict ourselves to the
case of only two types of mass m1 and m2, as we shall see
that the general case of a discrete spectrum of particles is a
simple generalization of this problem. We also restrict our
analysis to a spatial dimension d	2. The dimension d=2 is
critical and deserves a particular treatment �see �2� for the
single species case�. As in our previous works, we consider a
limit of strong friction �→ +� so that the dynamical equa-
tions reduce to the two-species Smoluchowski-Poisson sys-
tem �16�. We also restrict ourselves to spherically symmetric
solutions. By introducing dimensionless variables, we can set
kB=G=R=M =m1=�1=1 without loss of generality. Then,
the problem depends only on the asymmetry parameters �
=m1 /m2=1/m2 and 
=�1 /�2=1/�2 and on the temperature
T=1/ ����. With these conventions, the dynamical equations
can be written

��1

�t
= � · �T � �1 + �1 � �� , �81�

��2

�t
= 
 � · �T� � �2 + �2 � �� ,

�� = Sd� . �82�

We shall impose a vanishing flux across the surface of the
confining sphere. Therefore, the boundary conditions are

���0,t�
�r

= 0, ��1,t� =
1

2 − d
,

T
��1

�r
�1,t� + �1�1,t� = 0, T�

��2

�r
�1,t� + �2�1,t� = 0.

�83�

Using the Gauss theorem, we can rewrite the Smoluchowski-
Poisson system �81� and �82� in the form of two integrodif-
ferential equations

��1

�t
=

1

rd−1

�

�r�rd−1	T
��1

�r
+

�1

rd−1�
0

r

Sd��r��r�d−1dr�
� ,

��2

�t
=




rd−1

�

�r�rd−1	T�
��2

�r
+

�2

rd−1�
0

r

Sd��r��r�d−1dr�
� .

�84�

The Smoluchowski-Poisson system �84� is also equivalent to
a set of two coupled differential equations

�M1

�t
= T	 �2M1

�r2 +
1 − d

r

�M1

�r

 +

M1 + M2

rd−1

�M1

�r
,

FIG. 12. The normalized density profile �̃2=e−� is plotted for
�=5	2 and for two different values of � situated from both sides
of the critical value �*=1/ ��−2�=1/3. For �=1/9�* �regime I�,
the asymptotic slope of the profile is −�c=−3.6799 given by Eq.
�70�. For �=1	�* �regime II�, the asymptotic slope in the range
1������� is −4/�=−0.8, see Eq. �71�. The final asymptotic
slope in the range ���� is −�c=−8/5 given by Eq. �76�.
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�M2

�t
= 
�T�	 �2M2

�r2 +
1 − d

r

�M2

�r

 +

M1 + M2

rd−1

�M2

�r
� ,

�85�

for the quantities

M��r,t� = �
0

r

���r�,t�Sdr�d−1dr�, �86�

which give the mass of species �=1,2 within a sphere of
radius r. In terms of these variables, the boundary conditions
take the form

M��0,t� = 0, M1�1,t� =
�

1 + �
, M2�1,t� =

1

1 + �
.

�87�

Note that we shall restrict ourselves to the precollapse re-
gime, so that we do not consider the possibility that a Dirac
peak forms at r=0. A Dirac peak forms in the post-collapse
regime for d	2 and in d=2 �see �4,2� in the single species
case�. It will be more convenient to work in terms of the
functions s��r , t�=M��r , t� /rd which have the dimension of a
density. They satisfy

�s1�r,t�
�t

= T	 �2s1

�r2 +
d + 1

r

�s1

�r

 + �s1 + s2�	r

�s1

�r
+ ds1
 ,

�s2�r,t�
�t

= 
�T�	 �2s2

�r2 +
d + 1

r

�s2

�r

 + �s1 + s2�	r

�s2

�r
+ ds2
� .

�88�

We look for self-similar solutions of the form

s1�r,t� = �0�t�S1	 r

r0�t�

, s2�r,t� = �0

�/2�t�S2	 r

r0�t�

 ,

�89�

where �0�t� represents the typical central density of species 1
and r0�t� is the typical core radius �of the two species� de-
fined by

�0r0
2 = T . �90�

On physical grounds, we expect that the total density should
scale as in the single-species case because, on a coarse-
grained scale the fine structure of the mass distribution
should not matter �except for a continuous spectrum of mass
going from �0, +�� with peculiar behavior at the extremes,
which is not the case here�. Therefore, either the two profiles
scale the same manner or one dominates the other. Now, by
solving numerically the scaling equation coming from Eqs.
�88� and �89�, we have found that the problem does not ad-
mit any physical solution with �=2. Hence one species will
dominate the other. We define species 1 as the one that domi-
nates the dynamics. This choice imposes �2 for the other
species. We will give later the conditions on � and 
 for
which this requirement is satisfied. Inserting Eq. �89� in Eq.
�88� and using the notation x=r /r0�t�, the equation for
s1�r , t� is transformed into

d�0

dt
S1�x� − x

�0

r0

dr0

dt
S1��x� = T	�0

r0
2 S1��x� +

d + 1

x

�0

r0
2 S1��x�


+ ��0S1�x� + �0
�/2S2�x���x�0S1��x�

+ d�0S1�x�� . �91�

For sufficiently high densities, we can neglect the sub-
dominant term �0

�/2S2�x� in the above equation. Then, Eq.
�91� reduces to

d�0

dt
	S1�x� +

1

2
xS1��x�
 = �0

2	S1��x� +
d + 1

x
S1��x� + xS1�x�S1��x�

+ dS1
2�x�
 ,

which coincides with the equation obtained in the single-
species case �2�. Setting �0

−2d�0 /dt=2, we find that

�0�t� = 1
2 �tcoll − t�−1. �92�

Thus, the central density diverges in a finite time tcoll. Fur-
thermore, the differential equation for the invariant profile
can be solved analytically �2� and we get S1�x�=S0�x� where

S0�x� =
4

d − 2 + x2 . �93�

Using the preceding results, the differential equation deter-
mining the invariant profile of species 2 is given by the linear
second order differential equation


�S2��x� + �
	��d + 1�
x

+ xS0�x�
 − x�S2��x� + �d
S0�x�

− ��S2�x� = 0. �94�

For x→ +�, we have the asymptotic behavior

S2�x� � x−�. �95�

Equation �94� can be numerically solved for any couple
�� ,
�. As this equation has been obtained under the assump-
tion that the exponent �2, we define a critical ratio of
friction coefficients 
c��� corresponding to the limit of va-
lidity of this hypothesis, i.e., ��� ,
c�=2 �similarly, we de-
fine �c�
� such that ���c ,
�=2�.

In the case of a discrete spectrum of particle masses and
friction coefficients, the above calculations can be repeated.
One obtains an equation identical to Eq. �94� for each type of
subdominant particle, for which the analysis that we present
below has to be applied.

The critical ratio 
c��� is plotted in Fig. 13. The value

c�0� can be obtained analytically. Inserting �=0 and �=2 in
Eq. �94�, we obtain

x�
cS0�x� − 1�S2��x� + �d
cS0�x� − 2�S2�x� = 0. �96�

This equation must have a solution for any value of x. Taking
x=0, we find the necessary condition
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c�0� =
d − 2

2d
. �97�

Inserting this result in Eq. �96�, we find that the scaling pro-
file S2�x� is

S2�x� =
A

�d − 2�2/d + x2 , �98�

where A is an integration constant. The assumption that spe-
cies 1 dominates the collapse is valid for 

c���. Above
this critical line, the role played by the two species is
swapped, and species 2 dominates. We can return to the stud-
ied situation by simply changing the index 1↔2. Therefore,
if �� ,
� belongs to region 2 in Fig. 13, this transformation
leads to study the case �1/� ,1 /
� which belongs to a sub-
part of region 1, below the dashed line.

We have numerically studied this inversion in Fig. 14. We
first start with a value of �� ,
� below the critical line. Spe-
cifically, we take �=0.65 �leading to 
c�0.51� and �=

−
c=−0.1 �point ��. In that case, species 1 dominates the
collapse: its profile decreases as �1�r−2 while the profile of
species 2 decreases as �2�r−� with �=1.853372 deter-
mined by solving numerically the scaling equation �94� with
�� ,
�. We then increase the value of 
 above the critical line,
at the same distance �=
−
c= +0.1 �point ��. In that case,
we have a reversal of population. It is now species 2 that
dominates the collapse: its profile decreases as �2�r−2 while
the profile of species 1 scales as �1�r−��. To get the value of
�� from our study, we set 2→ I and 1→ II. We are now in the
situation where species I dominates. Due to this transforma-

tion, the new parameters are �̃�mI /mII=1 /� and 
̃
�
I /
II=1 /
. Then, SI=S2 is given by Eq. �93� and SII=S1 is

a solution of Eq. �94� with �̃ and 
̃. The numerical solution
of this scaling equation gives ��=1.74238. We note that ��
�� so that the slope of the function ����−2 is discontinu-
ous as �→0.

For �→2, the critical ratio 
c��� diverges. Therefore, for
�	2, species 1 always dominates the collapse whatever the
value of 
. It is possible to show the signature of this phe-
nomenon analytically. Assuming �=2 and 
c→ +�, Eq. �94�
reduces to

S2� + 	d + 1

x
+

xS0

�

S2� +

dS0

�
S2 = 0. �99�

For large x, the profile S2�x� should decay as x−2, which
immediately implies that �=2. Equation �99� for S2�x� can
then be solved in terms of hypergeometric functions. On the
other hand, considering a perturbation expansion d→ +�
�see Sec. IV B�, we can obtain the analytical expression


c��� =
1

2 − �
�d → + �� . �100�

We note that, in this limit, 
c�0�=1/2 in agreement with the
exact result �97�. We can also obtain an approximate expres-
sion of the profile S2�x� for d→ +� �see Sec. IV B�.

B. Perturbation expansion for d\ +�

We shall first obtain the expression of the scaling expo-
nent � for d→ +�. We shall see that the resulting expression
applied for d=3 already provides a good approximation of
the exact solution. We use a method similar to that developed
in �2� in a slightly different context. Equation �94� can be
formally written as a first order differential equation �writing
S2�= �S2� /S2��S2�� depending on x, S0, and S2� /S2�,

FIG. 13. The critical ratio 
c as a function of � in d=3 is plotted
in a log-log scale. This function starts at 
c�0�=1/6= �d−2� /2d and
diverges at �=2. Below the critical line, species 1 dominates the
collapse and above the critical line, species 2 dominates. In that
case, our study can still be used with the transformation �
 ,��
→ �1/
 ,1 /��. This gives a corresponding point located below the
dashed curve, corresponding to the function 1/
c�1/��. We show an
example illustrating this transformation when 
	
c. The ��� sym-
bol represents the point �0.65,0.41� and the ��� symbols represent
�0.65,0.61� and �1/0.65,1 /0.61�, respectively.

FIG. 14. We plot the scaling profiles S1 and S2 for �=0.65 and
for different values of 
. We take 
=0.41
c=0.511070 �dashed
lines� and 
=0.61	
c �solid lines�. This corresponds to the points
marked � and � in Fig. 13. For 
	
c, the exponent �� is obtained
from Eq. �94� using the equivalent point �1/� ,1 /
�.
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S2�

S2
=

d
S0�x� − �

x − 
�xS0�x� + �	d + 1

x
+

S2�

S2�

� . �101�

The term d
S0�x�−� vanishes for a particular x, noted x0

�0, whereas the ratio S2� /S2 cannot vanish. This implies that
the denominator in Eq. �101� must be equal to zero for x
=x0. Using Eq. �93�, x0 is explicitly given by

x0 =�d	4


�
− 1
 + 2. �102�

The condition that the denominator vanishes for this value
can be written

x0
2 − 
��	d + 1 + x0

S2��x0�
S2��x0�


 + x0
2S0�x0�� = 0. �103�

In the sequel, it is more convenient to work with the variable
u=x2. In terms of this variable, Eqs. �102� and �103� become

u0 = d	4


�
− 1
 + 2, �104�

u0 − 
��	d + 2 + 2u0
S2��u0�
S2��u0�


 + u0S0�u0�� = 0. �105�

Using Eqs. �93� and �104�, Eq. �105� can be rewritten

d	4


�
− 1 − 
�
 + 2�1 − 
	1 + � + �d	4


�
− 1
S2��u0�

S2��u0�

+
�

2

� − 2	
�

S2��u0�
S2��u0�

+
�

d

 = 0. �106�

In the limit d→ +�, keeping only the dominant terms in the
above equation, we obtain 
�+1−4
 /�=0 from which we
derive the zeroth order expression of �

� =
4


1 + 
�
. �107�

From this last equation, taking �=2, we get Eq. �100�. Sub-
stituting this result in Eq. �101� and keeping only the leading
terms for d→ +�, we get

S2��u�
S2�u�

= −
2


�d + u��1 + 
��
. �108�

This equation is easily integrated and leads to the first ap-
proximation of S2�x� in the large d limit

S2�x� =
A

�d + x2�2
/�1+
�� , �109�

where A is an integration constant which cannot be deter-
mined explicitly at this order. We are now able to obtain the
next order correction of �. Let us write

� =
4


1 + 
�
+

�1

d
. �110�

Inserting this expression in Eq. �106�, considering the limit
d→ +� and using Eqs. �93� and �109�, we finally obtain

�1 = −
8
�2
2� − 
� − 1�

�1 + 
��4 . �111�

This leads to the approximate expression of � to order 1 /d,

� =
4


1 + 
�
�1 −

2�2
2� − 
� − 1�
d�1 + 
��3 + O	 1

d2
� . �112�

This expression is valid for arbitrary values of � and 
 such
that �2.

C. Perturbation expansion for �È1 and �È1

We now consider the case of weak asymmetry ��1 and

�1 between the two species for any dimension d. In that
case, S2�x� will be close to S0�x� and � will be close to 2. We
set


 = 1 − �, � = 1 + �, � = 2 − ��
 − ���, �113�

S2�x� = S0�x��1 + �g
�x� + �g��x�� , �114�

with � ,��1. Substituting this expansion in Eq. �94�, it is
found that the functions g
�x� and g��x� satisfy the first order
differential equations �for their derivatives�

g
��x� + 	d + 1

x
− x
g
��x� =

2�d − 2�
d − 2 + x2 − �
, �115�

g�� �x� + 	d + 1

x
− x
g�� �x� =

2�d − 2��x2 + d + 2�
�d − 2 + x2�2 − ��.

�116�

We shall discuss these equations separately.

1. The case �=1

We first consider the case �=1. Equations �85� have been
solved numerically for 
=1/2 and the corresponding scaling
profiles are plotted in Fig. 15. The numerical results lead to
the predicted exponents: at large x, S1�x��x−2 and S2�x�
�x−�, where � is calculated using Eq. �94�. We now con-
sider the weak asymmetry limit 
=1−� with ��1 for �=1
�the condition �2 imposes �	0�. Then, S2�x�=S0�x��1
+�g
�x�� where g
�x� is the solution of Eq. �115�. This equa-
tion can be integrated once leading to

g
��x� = x−�d+1�ex2/2�
0

x

yd+1e−y2/2	 2�d − 2�
d − 2 + y2 − �

dy .

�117�

The integration constant has been determined so as to satisfy
the boundary condition g
��0�=0. Now, the condition that
g
��x�→0 as x→ +�, leads to an exact expression of �
. As

x−�d+1�ex2/2→ +� for x→ +�, the integral in Eq. �117� has to
vanish at large x. This yields
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�
�d� =

�
0

+�

yd+1e−y2/2 2�d − 2�
d − 2 + y2dy

�
0

+�

yd+1e−y2/2dy

� 0. �118�

Note that the integrals can be expressed in terms of � func-
tions. Rewriting Eq. �117� in the form

g
��x� = − x−�d+1�ex2/2�
x

+�

yd+1e−y2/2	 2�d − 2�
d − 2 + y2 − �

dy ,

�119�

we derive the large x behaviors

g
��x� �
�


x
, g
�x� � �
 ln x . �120�

We can also carry an expansion of �
�d� in powers of d−1 in
the limit d→ +�. Using the saddle point method in Eq. �118�
around the point y=�d+1, we obtain

�
�d� = 1 −
3

2d
−

1

4d2 −
15197

25920d3 −
266999

311040d4 + O	 1

d5
 .

�121�

We can check that the first terms of this expansion reproduce
those given by Eq. �112� for �=1 and 
=1−�.

2. The case �=1

We now consider the case 
=1. Equations �85� have been
solved numerically for �=2 and the corresponding scaling
profiles are plotted in Fig. 16. They converge to the invariant
profiles predicted by theory. We now consider the weak
asymmetry limit �=1+� with ��1 for 
=1 �the condition

�2 imposes �	0�. Then, S2�x�=S0�x��1+�g��x�� where
g��x� is solution of Eq. �116�. Following a procedure similar
to that exposed previously, we get the following expression
of ��:

���d� =

�
0

+�

yd+1e−y2/22�d − 2��y2 + d + 2�
�d − 2 + y2�2 dy

�
0

+�

yd+1e−y2/2dy

� 0

�122�

and the asymptotic behaviors

g�� �x� �
��

x
, g��x� � �� ln x . �123�

The large d expansion of Eq. �122� is

���d� = 1 +
1

2d
−

5

4d2 −
9

8d3 −
23

16d4 + O	 1

d5
, d → + � ,

�124�

and the first terms of this expansion reproduce those of Eq.
�112� for 
=1 and �=1+�. The exact values of �
�d� and
���d� along with their O�d4� expansions are plotted in Fig.
17. For d=3, the exact values are �
�3�=0.437 119 695 and
���3�=0.940 162 135.

D. Other perturbation expansions

We now consider perturbation expansions of Eq. �94� for
small and large values of � and 
. For �→0 and 

c, Eq.
�94� reduces to

FIG. 15. The resolution of the time-dependent equations �85�
shows that the evolution is self-similar. We fix for the simulation:
�=1, d=3, T=0.2, 
=0.5 and M1=M2=0.5. For t→ tcoll, the res-
caled densities converge to the invariant profiles S1�x� and S2�x�
predicted by the theory. The profile of species 1 is the same as in the
one-component problem: S1�x�=S0�x��x−2. The profile of species
2 has been obtained by solving Eq. �94� numerically: S2�x��x−�

with �=1.66554193.

FIG. 16. The resolution of the time-dependent equations �85�
shows that the evolution is self-similar. We fix for the simulation:

=1, d=3, T=0.2, �=2 and M1=M2=0.5. For t→ tcoll, the rescaled
densities converge to the invariant profiles S1�x� and S2�x� predicted
by the theory. The profile of species 1 is the same as in the one-
component problem: S1�x�=S0�x��x−2. The profile of species 2 has
been obtained by solving Eq. �94� numerically: S2�x��x−� with �
=1.351 914 32. Note that the large d expansion Eq. �107� leads to
�=4/3 in fair agreement with the exact numerical result.
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x�
S0�x� − 1�S2��x� + �d
S0�x� − ��S2�x� = 0. �125�

Considering the value x=0, we get d
S0�0�−�=0 leading to

� =
4d


d − 2
. �126�

Then, the scaling profile is given by

S2�x� =
A

�d − 2 − 4
 + x2�2d
/�d−2� . �127�

We now wish to examine the limit �→ +�. We assume that
��1/� and check this scaling a posteriori. Using the fact
that S2�x−� for x→ +� and comparing terms of order x−�−2

in Eq. �94�, we find that

� =
4

�
. �128�

We note that this expression is independent of 
. The scaling
profile obtained from Eq. �94� can be expressed in terms of
hypergeometric functions.

In the limit 
→0, Eq. �94� simplifies into

− xS2��x� + �d
S0�x� − ��S2�x� = 0. �129�

Considering the value x=0, we get

� =
4d


d − 2
. �130�

Then, the scaling profile S2�x� takes the form

S2�x� =
A

�d − 2 + x2�2d
/�d−2� . �131�

We now wish to examine the limit 
→ +� and �	2. Using
the fact that S2�x−� for x→ +� and comparing terms of
order x−�−2, we find that ��2− �4+d���+4d=0 leading to
�=d or �=4/�. Since �2, we get

� =
4

�
. �132�

Figure 18 shows the functions ��
=1,�� and ��
 ,�=1� ob-
tained by solving Eq. �94� in d=3 and compares these nu-
merical results with the asymptotic expansions obtained pre-
viously. For 
 and � close to 1, the slope of the function
��
 ,�� is given by Eqs. �122� and �118�. This figure also
confirms the asymptotic expressions �126� and �130� ob-
tained for �→ +� and 
→0.

V. CONCLUSION

In this paper, we have extended previous studies on the
thermodynamics of self-gravitating particles in d-dimensions
to the case of multicomponent systems. Our static study ap-
plies both to the microcanonical �fixed E� and canonical
�fixed T� ensembles. Thus, it describes ordinary stellar sys-
tems �like globular clusters� �32�, self-gravitating Brownian
particles �1�, and bacterial populations �17,6�. We have in-
vestigated how the critical energy �Antonov point� and the
critical temperature �Jeans point� depend on the parameters.
If we take as a reference a single-species system with par-
ticles of mass m2 and add particles of mass m1 �while remov-
ing some particles of mass m2 so as to keep the total mass M
fixed�, we find that the critical temperature is increased if
m1	m2 and decreased if m1m2 �an analytical estimate of
the critical temperature has been obtained in d	2 using the
Jeans swindle�. By contrast, the critical energy is always in-
creased with respect to the single species case in d	2. For
given ratio �=m1 /m2, it presents a maximum at a certain
value of �=M1 /M2�0.7 �Fig. 3�b��. This maximum energy
increases roughly linearly with � �Fig. 5�. As in the one-
component case, two-dimensional systems require a specific
attention. In d=2, there is no collapse in the microcanonical
ensemble but there is a collapse in the canonical ensemble

FIG. 17. Numerical calculation of �
 and �� given by Eqs.
�118� and �122� as a function of the dimension d. The dashed line
represents the asymptotic value for d→ +�. The ��� symbols repre-
sent the large d expansion of �
 and �� to order d−4 given in Eqs.
�121� and �124�.

FIG. 18. The exponent � is plotted for �=1,
�1 and for �
�1,
=1 in d=3. The dashed lines give the different asymptotic
behaviors obtained analytically. Finally, the dotted line for 
=1 cor-
responds to the result Eq. �107� of the large d expansion, and is in
excellent agreement with the exact value of � �the two curves are
almost indistinguishable�.
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below a critical temperature. We have obtained this critical
temperature analytically. For ��2 and for ��	2 and �
�*=1/ ��−2��, the two species of particles form a Dirac
peak at T=Tc and the expression �70� of the critical tempera-
ture can be obtained from the Virial theorem. For ��	2 and
�	�*=1/ ��−2��, only the heaviest particles form a Dirac at
T=Tc and the expression of the critical temperature �76� is
different.

We have also studied the dynamics of self-gravitating
Brownian particles �and bacterial populations� in the frame-
work of the two-species Smoluchowski-Poisson system. This
corresponds to the canonical ensemble. For TTc, there is
no equilibrium state and the system collapses. Looking for
self-similar solutions, we have shown that one species domi-
nates the other and collapses as in the single-species problem
with a scaling profile ��r��r−2. The selection of the domi-
nant species is nontrivial. For �	2, the dominant species is
always the one with the heaviest particles. For �2, the
selection depends on the ratio 
 of friction parameters as
shown in Fig. 13 �for 
=1, the species with heaviest particles
always dominates the collapse�. The scaling profile of the
“slaved” species decays with an exponent �2 depending
on d, �, and �. This exponent can be calculated numerically
by solving Eq. �94�. We have also given several asymptotic
expansions, see Eqs. �112�, �118�, �122�, �126�, �128�, �130�,
and �132�.

The generalization of our approach to a continuous spec-
trum of masses and friction coefficients does not look
straightforward. Let us focus on the simpler case of identical
friction coefficients. The precise form of the mass spectrum
is certainly highly relevant. In particular, we expect that the
value of the minimum and maximum masses �possibly 0 and
+�� is crucial. In addition, the behavior of the distribution
near the largest mass �for instance p�m���m−mmax�−� if
mmax is finite ��1�, p�m��m−� otherwise ��	1�� is cer-
tainly an important ingredient. However, in the case of a
bounded distribution of mass without extravagant singulari-
ties, we expect that the results obtained in the present paper
will qualitatively hold: the heaviest particles will scale as in
the one species case, while lighter particles will scale with a
mass dependent exponent 2.

APPENDIX A: DERIVATION
OF THE MEAN-FIELD EQUATIONS

In this Appendix, we show that the mean-field approxima-
tion used in our study is exact in a proper thermodynamic
limit �see �8� in the single species case�. We consider the
case of self-gravitating Brownian particles described by the
stochastic equations �11�. The proper statistical ensemble for
this system is the canonical ensemble. At equilibrium, the
N-body distribution function is given by

PN�r1,v1, . . . ,rN,vN� =
1

ZT
e−�H�r1,v1,. . .,rN,vN�, �A1�

where ZT is the partition function �normalization constant�
and H is the Hamiltonian

H =
1

2�
i=1

N

mivi
2 + �

ij

mimju�ri − r j� = K + U , �A2�

where u�ri−r j�=uij =−G / ��d−2��ri−r j��d−2�� is the gravita-
tional potential. From Eq. �A2�, it is clear that the velocity
distribution is Gaussian. We shall therefore restrict ourselves
to the configurational part

PN�r1, . . . ,rN� =
1

Z
e−�U�r1,. . .,rN�. �A3�

We introduce the density probability for particle i of species
� to be at ri, namely,

P1
����ri� =� PN�r1, . . . ,rN��

j�i

dr j . �A4�

Similarly, we define the density probability to find particle i
of species � at ri and particle j of species �� at r j,

P2
������ri,r j� =� PN�r1, . . . ,rN� �

k�i,j
drk. �A5�

The total density of particles at r is given by ��r�=�imi��r
−ri�. Its mean value ���r�=�i�mi��r
−ri�PN�r1 , ¯ ,rN�� jdr j can be written

���r� = �
�=1

X

�
i�I�

� m���r − ri�P1
����ri�dri

= �
�=1

X

N�m�P1
����r� = �

�=1

X

����r� , �A6�

where we have defined I�= �g�−1N+1,g�N� with g0=0 and
gX=1 as the interval of indices labeling particles of species
�. In the following, we shall work with the mean density.
Therefore, we drop the brackets �· in order to simplify the
notations. Taking the derivative of Eq. �A1� with respect to
ri, we get

�PN

�ri
= − �PN

�U

�ri
= − ��

j�i

PNmimj
�uij

�ri
. �A7�

Assuming that i� I� and integrating over the other variables,
we find that

�P1
���

�ri
= − ��

j�i
� PNmimj

�uij

�ri
�
k�i

drk

= − ��N� − 1� � P2
�����ri,r2�m�

2 �ui2

�ri
dr2

− � �
����

N��� P2
������ri,r2�m�m��

�ui2

�ri
dr2.

�A8�

Similarly, we can write an equation for P2
������ri ,r j� by inte-

grating Eq. �A1� over N−2 variables. Then writing
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P2
������ri,r j� = P1

����ri�P1
�����r j� + P2�

������ri,r j� , �A9�

we can show �see �8� in the single species case� that the
cumulating function P2� is of order N�

−1 in the limit

N� → + � with fixed �� =
�GM�m�

Rd−2 and �� =
m�

mX
.

�A10�

Thus, in this proper thermodynamic limit, we can make the
mean-field approximation

P2
������ri,r j� = P1

����ri�P1
�����r j� , �A11�

which consists of neglecting the correlations and replacing
the two-body distribution function by a product of two one-
body distribution functions. Inserting this expression in Eq.
�A8�, we get

�P1
���

�ri
= − �m�P1

����ri��
��
� N��P1

�����r2�m��
�ui2

�ri
dr2.

�A12�

Introducing the mean density of each species

���r� = N�m�P1
����r� , �A13�

and the gravitational potential

��r� = �
�
� ���r��u�r − r��dr�, �A14�

we can rewrite the above equation in the form

���

�r
= − �m����r� � ��r� . �A15�

After integration, we obtain the Boltzmann distribution

���r� = A�e−�m���r�. �A16�

The mean potential energy W= �U is given by

W =
1

2�
i�j
� mimjuijPN�

k=1

N

drk

=
1

2�
�

N��N� − 1�m�
2 � P2

�����r1,r2�u12dr1dr2

+
1

2 �
����

N�N��m�m��� P2
������r1,r2�u12dr1dr2.

�A17�

Implementing the mean-field approximation �A11�, valid in
the thermodynamic limit, the above expression simplifies
into

W =
1

2 �
�,��

N�N��m�m��� P1
����r1�P1

�����r2�u12dr1dr2,

�A18�

which can finally be rewritten as

W =
1

2
� ��r���r�dr . �A19�

We now consider the dynamical problem defined by the
stochastic equations �11�. Using the Kramers-Moyal expan-
sion, the Fokker-Planck equation for the evolution of the
N-body distribution function PN�r1 ,v1 , ¯ ,rN ,vN , t� reads

�PN

�t
+ �

i=1

N 	vi ·
�PN

�ri
+ Fi ·

�PN

�vi



= �
i=1

N
�

�vi
· 	Di

�PN

�vi
+ �iPNvi
 , �A20�

where Fi=−�1/mi��iU is the force by unit of mass �accelera-
tion� acting on particle i. We note that the stationary solution
of Eq. �A20� is the canonical distribution �A1� provided that
the coefficients of friction and diffusion are related to each
other according to the Einstein formula

Di =
�i

�mi
. �A21�

Taking i� I� and integrating over the other variables, we get

�P1
���

�t
+ vi ·

�P1
���

�ri
+� Fi ·

�PN

�vi
�
k�i

drkdvk

=
�

�vi
· 	D�

�P1
���

�vi
+ ��P1

���vi
 . �A22�

Now

I �� FiPN�
k�i

drkdvk

= −� �N� − 1�m�

�ui2

�ri
P2

�����ri,vi,r2,v2,t�dr2dv2

− �
����

� N��m��
�ui2

�ri
P2

������ri,vi,r2,v2,t�dr2dv2.

�A23�

From the N-body Fokker-Planck equation �A20�, we can ob-
tain an equation for the time evolution of the two-body dis-

tribution function P2
������ri ,v j ,r j ,v j , t� and again show that,

in the proper thermodynamic limit, the mean-field approxi-
mation �A11� becomes exact. In that case, the expression of
I simplifies into

I = − P1
����ri,vi,t� � �

��

N��m��P1
�����r2,v2,t�

�ui2

�ri
dr2dv2

= P1
����ri,vi,t��Fi, �A24�

where �Fi=−�i� is the mean force �by unit of mass� acting
on particle i. Introducing the distribution function

f��r,v,t� = N�m�P1
����r,v,t� , �A25�

the mean-field Fokker-Planck equation takes the form
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�f�

�t
+ v ·

�f�

�r
+ �F ·

�f�

�v
=

�

�v
· 	D�

�f�

�v
+ ��f�v
 .

�A26�

In the strong friction limit, the stochastic equations of
motion are given by Eq. �15�. In that case, the N-body
Fokker–Planck equation reads

�PN

�t
= �

i=1

N
�

�ri
· 	Di�

�PN

�ri
+ �iPN�iU
 . �A27�

We note that the stationary solution of this equation is given
by the configurational part of the canonical distribution �A1�
provided that the diffusion coefficient and the mobility are
related to each other by the Einstein relation

Di� =
�i

�
. �A28�

Assuming that i� I� and integrating over the other variables,
we get

�P1
���

�t
=

�

�ri
· 	D��

�P1
���

�ri
+ ��� PN�iU�

j�i

drk
 .

�A29�

Evaluating the last term in the mean-field approximation as
done previously, we find that

�P1
���

�t
=

�

�ri
· 	D��

�P1
���

�ri
+ ��m�P1

����i�
 , �A30�

which is clearly the same as

���

�t
=

1

��

� · 	 kBT

m�

� �� + �� � �
 . �A31�

APPENDIX B: ESTIMATE OF THE CRITICAL
TEMPERATURE USING THE JEANS SWINDLE

In this Appendix, we extend the original Jeans instability
criterion to the case of a multicomponent system. We make
the Jeans swindle, assuming that the unperturbed state is in-
finite and homogeneous. Then, we use this criterion to obtain
an estimate of the critical temperature Tc of an inhomoge-
neous isothermal multicomponent self-gravitating system
confined within a box.

Let us consider a small perturbation around an equilib-
rium state of the two-component Smoluchowski-Poisson sys-
tem. The linearized equations for the perturbation can be
written

���1

�t
=

1

�1
� · 	 kBT

m1
� ��1 + �1 � �� + ��1 � �
 ,

���2

�t
=

1

�2
� · 	 kBT

m2
� ��2 + �2 � �� + ��2 � �
 ,

�B1�

where � and � refer to the equilibrium state. They have to be
completed with the linearized Poisson equation

��� = SdG�� . �B2�

These equations are exact but they remain complicated if the
static solution is inhomogeneous. They can be solved �semi-
analytically� for a one-component system �13� but the gen-
eralization to a multicomponent system is not straightfor-
ward. We shall invoke here the Jeans swindle and consider
that the equilibrium state is infinite and homogeneous al-
though this does not rigorously satisfy the equations at zeroth
order. With this simplifying assumption, using Eq. �B2�, the
linearized equations �B1� take the form

���1

�t
=

1

�1
	 kBT

m1
���1 + �1SdG��
 ,

���2

�t
=

1

�2
	 kBT

m2
���2 + �2SdG��
 . �B3�

Writing the perturbation as ����ei�k·r−�t�, we get

	− i��1 +
kBT

m1
k2 − SdG�1
��1 − SdG�1��2 = 0,

− SdG�2��1 + 	− i��2 +
kBT

m2
k2 − SdG�2
��2 = 0. �B4�

The cancellation of the determinant of the above system de-
termines the dispersion relation. One can show that �=−i� is
real so it represents either the growth rate of the perturbation
��	0� or its exponential damping ��0�. �Note that if we
start from the two-component barotropic Euler equations
�which are the usual equations used in Jeans analysis� instead
of the two-component Smoluchowski equations, we get the
same form of dispersion relation except that i��� is replaced
by �2 and kBT /m� is replaced by the velocity of sound c�

2 . In
that case �2 is real; for �2	0, the system is stable and the
perturbation oscillates with pulsation � and for �20 the
system is unstable and the growth rate is �i��.� The point of
marginal stability �=0 is obtained for the Jeans wave vector

kJ
2 =

SdG�m1�1 + m2�2�
kBT

. �B5�

More generally, for a multicomponent system, we have
found �not detailed� that

kJ
2 =

SdG

kBT
�
�=1

X

m���. �B6�

The criterion of instability −i��0 is equivalent to k�kJ. In
terms of the wavelength �=2� /k, it can be written

�2 � �J
2 =

4�2kBT

SdG�m1�1 + m2�2�
. �B7�

This criterion means that if the size of the perturbation � is
larger than the critical value �J, the gravitational attraction
will prevail over diffusion and the system will collapse. If we
now return to our original problem, namely an isothermal
system enclosed within a box of radius R, a naive application
of the above criterion indicates that the system is unstable if
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R	�J. Introducing the total mass of each species through
the relation ���M� /Rd, this criterion can be rewritten in
terms of the temperature as

T � Tc � Kd
G�m1M1 + m2M2�R2−d

kB
. �B8�

As noticed in �13�, the critical temperature Tc marking the
gravitational instability of box-confined isothermal systems
can be related to the Jeans instability criterion by the above
argument. Of course, this naïve approach cannot catch the
numerical constant Kd which appears in the expression of the
critical temperature. However, this constant can be obtained
from the numerical study of the single species case in d=3
where we have Tc=GMm /2.52kBR �13�. Thus, we take K3
=1/2.52. Now, the interest of our treatment for a multi-
component system is that we can obtain the dependence of
the critical temperature with � and �. Returning to dimen-
sionless variables, we get the instability criterion

� � �J = 2.52
1 + �

1 + ��
, �B9�

where �J is the critical inverse temperature obtained by using
the Jeans swindle. This expression returns the single-species
result for �=0 and for �=1. It is also consistent with the
single-species result for �→ +� if we redefine � with m1
instead of m2. If we consider the limit �→0 or +� with
fixed N1 /N2, then �= �N1 /N2��→0 or +�, and we again
recover the single species case. More generally, we see in
Fig. 4 that this approximate expression gives a fair agree-
ment with the exact solution. This is quite satisfying in view
of the approximations made to arrive at Eq. �B9� �we have
assumed that the system is homogeneous�. The relative suc-
cess of this naïve approach is explained by the fact that in
d=3 the system is weakly inhomogeneous at Tc. By contrast,
the expression �B9� does not work at all in d=2 �compare
with the exact values �70� and �76�� because the system tends
to a Dirac peak at T=Tc.
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